# **Elemental Scientific**

Elemental Analysis of Wines from Various Regions Around the World - prepFAST IC



Authors: C. Derrick Quarles, Jr., Aurelien Viscardi, and Daniel R. Wiederin

# Elemental Analysis of Wines from Various Regions Around the World - prepFAST IC

### Introduction

Wine is a popular beverage of choice throughout the world and can range in quality, cost, taste, and flavor. The perception of wine quality is generally characterized by the overall score received from a wine critic or the popularity among consumers. However, analytical testing is an important aspect for determining the quality of the wine from the perspective of food safety. The testing can be broken into a few categories: molecular or organic content and elemental or inorganic content. The elemental content can affect various properties of wine; some inorganics (e.g. S, P, Fe, Mg, or Ca) can affect the flavor, color, aroma, and rate of precipitation, whereas elements such as As, Cd, Hg, and Pb are considered toxic and pose great risk for the consumer.

The most common method for elemental analysis is inductively coupled plasma-optical emission spectroscopy or -mass spectrometry (ICP or ICPMS). ICPMS is normally the preferred choice of instruments since it offers superior detection limits. For certain elements (e.g. As) detecting the total amount in the wine does not provide all relevant information when trying to assess levels of toxic species present. For example, arsenic has various forms that exist as both organic and inorganic species. Inorganic arsenic (As III or As V) is more bioavailable, thus is more dangerous as compared to organic arsenic species (AsB, AsC, DMA, or MMA).

This work will present an automated method for measuring total elemental content and elemental speciation in wine using a single sample introduction platform (prep*FAST* IC, Elemental Scientific, Inc.) in combination with an ICP-MS. The total elemental measurements will include both essential and toxic elements in the panel. Various types of wine (red, white, sweet, and port) from France, United States, Chile, Italy, Australia, South Africa, Spain, Portugal, and Argentina were included in this study (Table 1).

Table 1. List of wines analyzed in this study based on wine type and region of the world.

|              | 5                        | 31 5           |                               |                                |
|--------------|--------------------------|----------------|-------------------------------|--------------------------------|
|              | Sweet                    | White          | Red                           | Other                          |
| USA          | Moscato                  | Pinot Grigio   | Merlot                        |                                |
| Italy        | Moscato,<br>Stella Peach | Pinot Grigio   | Toscano                       |                                |
| Australia    |                          | Pinot Grigio   | Shiraz                        |                                |
| Argentina    | Torrontes-Sweet          | Torrontes      | Cabernet Sauvignon,<br>Malbec |                                |
| Chile        |                          |                | Carmenere                     | Rosé                           |
| South Africa |                          |                | Cabernet Sauvignon            |                                |
| France       | Sauternes                | White Burgundy | Red Bordeaux                  |                                |
| Spain        |                          | Macabeo        | Tempranillo                   |                                |
| Portugal     |                          | Vinho Verde    |                               | Late Vintage,<br>10 year Tawny |



#### Instrumentation

A NexION 2000 ICPMS in combination with the prep*FAST* IC was used for the analysis of wine from various regions around the world. The elements and species measured for each method can be found in Table 2. Undiluted wine samples were vacuum loaded (syringe loading can also be used) into a 500  $\mu$ L loop (sample loop) followed by subsequent dilution into a second 500  $\mu$ L loop (dilution loop). In total metals mode the sample is introduced directly to the ICPMS by bypassing the column, whereas in speciation mode, the sample is injected

onto the column prior to introduction to the ICPMS. The total metals method utilized 2% HNO<sub>3</sub> as the carrier and diluent, internal standards (Rh and Ir) were spiked into the sample during the dilution step, and wine samples were analyzed using a 10X dilution factor. The arsenic speciation method utilizes ammonium carbonate as the eluent and wine samples were analyzed using a 10X dilution factor.



prepFAST IC

Figure 1. prepFAST IC features diagram.

Table 2. Elements included in each method.

|                    | Elements Included                                                                                                                             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Total Metals       | Na, Mg, Si, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Sb, Cs, Ba, Tl, Pb, and U                                                             |
| Arsenic Speciation | Arsenobetaine (AsB), Arsenite (As III), Dimethylarsinic Acid (DMA), Arsenocholine (AsC),<br>Monomethylarsonic Acid (MMA), and Arsenate (As V) |

## **Results**

#### **Total Metals**

The total metals method for wine measured for 20 elements per sample, all in KED mode. All elements were measured in KED mode to simplify and speed up the overall time of the ICPMS measurement. Figure 2a and 2b displays typical calibration curves for Cu, As, and Pb. The calibration curves showed good linearity across all elements analyzed. Mn, Fe, Cu, Zn, As, Cs, Ba, and Pb had the most variation from sample-to-sample, whereas the other elements had a more consistent trend in the measured value across the different types of wine. Na, Mg, Si, Mn, Fe, and Zn were measured in the mg/L (ppm) range for these 24 wine samples. All other elements were detected in the  $\mu$ g/L (ppb) range. Arsenic was detected in all wine samples and ranged from 2.1 - 56  $\mu$ g/L. Chromium was detected in all but two wine samples (both ports) and ranged from 2.0 - 59  $\mu$ g/L.



Figure 2a. Typical calibration curves from the total metals method for Cu and As.

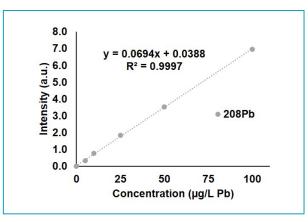



Figure 2b. Typical calibration curve from the total metals method for Pb.

|                 |                       |                  | 1                | 1                |                  |                  |              |                  | 1                |                  |                  | -                |              |                   |                   |                   |                   |                   |                   |                   |                  |
|-----------------|-----------------------|------------------|------------------|------------------|------------------|------------------|--------------|------------------|------------------|------------------|------------------|------------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
|                 |                       | <sup>23</sup> Na | <sup>24</sup> Mg | <sup>28</sup> Si | <sup>52</sup> Cr | <sup>55</sup> Mn | 57 <b>Fe</b> | <sup>59</sup> Co | <sup>60</sup> Ni | <sup>63</sup> Cu | <sup>66</sup> Zn | <sup>75</sup> As | 98 <b>Mo</b> | <sup>114</sup> Cd | <sup>118</sup> Sn | <sup>121</sup> Sb | <sup>133</sup> Cs | <sup>138</sup> Ba | <sup>205</sup> TI | <sup>208</sup> Pb | <sup>238</sup> U |
| Country         | Wine Type             |                  | mg/L             |                  |                  |                  |              |                  |                  |                  |                  |                  | μg/L         |                   |                   |                   |                   |                   |                   |                   |                  |
| France          | White Bourgogne       | 15               | 35               | 62               | 30               | 678              | 578          | 2.9              | 16               | 64               | 669              | 7.9              | 1.6          | 0.38              | 1.8               | 0.51              | 6.9               | 48                | 0.60              | 9.9               | 0.33             |
| France          | Red Bordeaux          | 15               | 40               | 65               | 30               | 1589             | 3411         | 4.1              | 33               | 113              | 1010             | 12               | 5.8          | 0.32              | 1.9               | 0.35              | 2.4               | 182               | 0.11              | 16.9              | 0.08             |
| France          | Sauternes             | 34               | 47               | 70               | 22               | 1838             | 591          | 3.9              | 21               | 85               | 915              | 12               | 7.2          | 0.31              | 2.6               | 1.1               | 1.7               | 231               | 0.36              | 22.5              | 0.27             |
| USA             | Merlot                | 14               | 57               | 92               | 34               | 2046             | 3040         | 6.4              | 30               | 218              | 1274             | 15               | 3.7          | 1.5               | 6.4               | 2.1               | 9.9               | 336               | 1.27              | 4.2               | 1.1              |
| USA             | Pinot Grigio          | 33               | 38               | 66               | 59               | 1210             | 1658         | 3.4              | 25               | 154              | 846              | 56               | 25           | 0.77              | 12                | 2.5               | 4.4               | 94                | 0.38              | 14.6              | 2.7              |
| USA             | Moscato               | 25               | 40               | 40               | 12               | 1034             | 527          | 3.5              | 16               | 122              | 918              | 7.3              | 4.2          | 0.85              | 4.7               | 0.34              | 4.0               | 119               | 0.23              | 8.7               | 0.21             |
| Chile           | Rosé                  | 19               | 47               | 61               | 42               | 1184             | 965          | 4.0              | 15               | 5.9              | 1192             | 40               | 15           | 0.29              | 4.9               | 0.73              | 11                | 55                | 0.11              | 4.3               | 0.12             |
| Chile           | Carmenere             | 15               | 50               | 67               | 30               | 1376             | 2498         | 3.2              | 12               | 174              | 784              | 11               | 1.1          | 0.19              | 1.2               | 0.12              | 16                | 135               | 0.14              | 4.6               | 0.07             |
| Italy           | Toscana               | 16               | 54               | 67               | 30               | 1671             | 2595         | 4.3              | 32               | 117              | 833              | 4.4              | 1.2          | 0.17              | 1.0               | 0.16              | 106               | 175               | 0.81              | 8.9               | 0.01             |
| Italy           | Stella Peach          | 16               | 34               | 31               | 2                | 308              | 945          | 1.0              | 4.9              | 292              | *                | 4.8              | 2.6          | 0.20              | 3.5               | 0.31              | 0.9               | 39                | 0.09              | 5.1               | 0.11             |
| Italy           | Moscato               | 23               | 49               | 22               | 7                | 489              | 256          | 1.2              | 12               | 82               | 201              | 2.1              | 1.1          | 0.34              | 19                | 0.23              | 4.2               | 34                | 0.21              | 2.6               | 0.13             |
| Italy           | Pinot Grigio          | 27               | 52               | 61               | 32               | 751              | 1002         | 1.2              | 14               | 95               | 319              | 6.5              | 2.1          | 0.10              | 2.7               | 0.36              | 1.5               | 111               | 0.07              | 4.9               | 0.16             |
| Australia       | Shiraz                | 52               | 73               | 71               | 27               | 1505             | 1334         | 4.1              | 11               | 69               | 831              | 5.2              | 3.1          | 0.21              | 1.4               | 0.05              | 0.9               | 176               | 0.09              | 2.2               | 0.01             |
| Australia       | Pinot Grigio          | 20               | 39               | 56               | 21               | 1544             | 340          | 4.4              | 13               | 36               | 881              | 5.1              | 5.4          | 0.20              | 5.9               | 0.19              | 1.3               | 101               | 0.09              | 7.7               | 0.18             |
| South<br>Africa | Cabernet<br>Sauvignon | 28               | 73               | 71               | 25               | 2178             | 3386         | 2.6              | 12               | 36               | 546              | 6.6              | 1.9          | 0.05              | 2.0               | 0.18              | 10                | 295               | 0.68              | 5.9               | 0.16             |
| Spain           | Viura                 | 20               | 37               | 61               | 28               | 469              | 555          | 1.9              | 7.9              | 57               | 283              | 6.1              | 0.7          | 0.16              | 2.7               | 0.22              | 2.6               | 46                | 0.15              | 5.4               | 0.19             |
| Spain           | Crianza               | 30               | 54               | 64               | 31               | 566              | 1095         | 1.9              | 10               | 31               | 676              | 4.8              | 1.7          | 0.07              | 0.4               | 0.09              | 3.8               | 54                | 0.10              | 2.3               | 0.10             |
| Portugal        | Vinho Verde           | 20               | 51               | 39               | 12               | 989              | 1765         | 3.3              | 13               | 28               | 407              | 4.8              | 1.2          | 0.28              | 4.6               | 0.34              | 8.1               | 106               | 0.41              | 9.6               | 0.15             |
| Portugal        | Tawny Port            | 23               | 46               | 101              | *                | 2304             | 1356         | 8.1              | 29               | 221              | 547              | 22               | 7.4          | 0.30              | 2.0               | 1.0               | 73                | 47                | 0.49              | 39.4              | 1.4              |
| Portugal        | Vintage Port          | 9                | 66               | 101              | *                | 3165             | 642          | 8.8              | 75               | 34               | 440              | 6.0              | 0.5          | 0.24              | 3.7               | 0.33              | 13                | 70                | 0.56              | 8.2               | 0.14             |
| Argentina       | Cabernet<br>Sauvignon | 21               | 54               | 74               | 18               | 1121             | 1501         | 1.8              | 10               | 42               | 582              | 30               | 5.0          | 0.16              | 0.8               | 0.51              | 1.2               | 113               | 0.15              | 5.8               | 1.2              |
| Argentina       | Malbec                | 85               | 32               | 65               | 29               | 710              | 1504         | 1.9              | 7.5              | 251              | 194              | 39               | 7.9          | 0.24              | 8.3               | 0.75              | 1.5               | 32                | 0.17              | 19.0              | 2.0              |
| Argentina       | Torrontes-Sweet       | 56               | 33               | 34               | 43               | 549              | 1118         | 1.8              | 8.1              | 281              | 183              | 13               | 5.8          | 0.26              | 4.6               | 0.44              | 1.0               | 28                | 0.07              | 17.6              | 0.50             |
| Argentina       | Torrontes             | 28               | 50               | 73               | 18               | 1291             | 1845         | 2.0              | 11               | 253              | 530              | 18               | 2.2          | 0.20              | 3.4               | 0.15              | 1.4               | 77                | 0.09              | 5.2               | 0.49             |

Table 3. Total metals results for the 24 wine samples analyzed in direct mode using the prepFAST IC.

#### **Arsenic Speciation**

The arsenic speciation method measured for six arsenic species in wine (AsB, DMA, MMA, AsC, As III, and As V). The arsenic measurements were carried out in KED mode (helium gas), the corresponding chromatograms were exported and reprocessed in ESI's data processing software (Xceleri). Figure 3a and 3b displays typical calibration curves for DMA, AsC, and As III. Figure 4 displays the chromatograms of the USA merlot wine unspiked and spiked with each arsenic species. It is typical to see matrix effects for samples such as urine or seawater due to the high salt content; in these cases an inline dilution is applied to reduce/eliminate these effects. Figure 5 displays the spiked merlot wine chromatograms for 10X, 25X, 50X, and 100X dilution factors. Good recovery for all dilution factors (Table 4) and no shifting of peaks (elution times) were detected for the different dilution factors, therefore a 10X dilution factor was applied for the sample analyses.

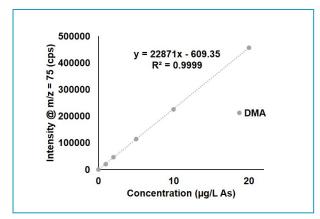



Figure 3a. Typical calibration curve from the arsenic speciation method for DMA.

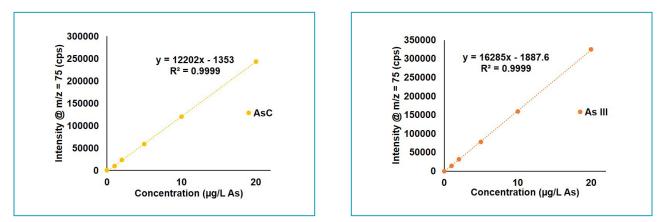
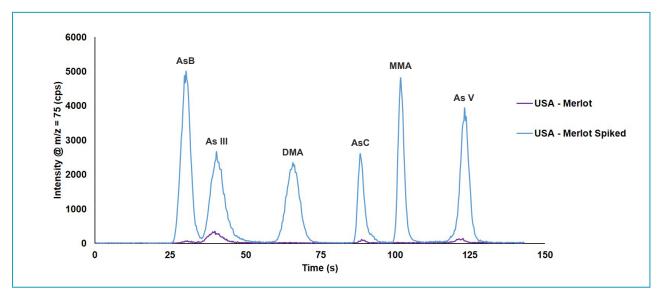
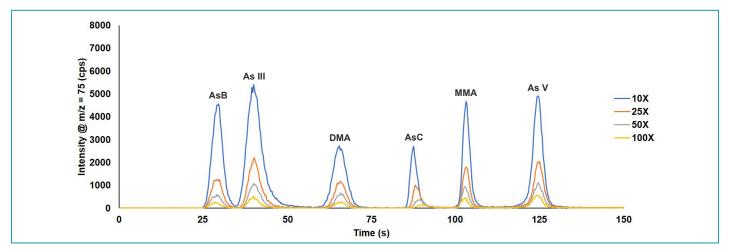





Figure 3b. Typical calibration curves from the arsenic speciation method for AsC and As III.



**Figure 4.** Overlay of USA merlot spiked chromatograms measured with different dilution factors. The USA merlot was spiked with 10 µg/L of each arsenic species.



**Figure 5.** Overlay of USA merlot spiked chromatograms measured with different dilution factors. The USA merlot was spiked with 10 µg/L of each arsenic species.

| Table 4. Results from the dilution study for USA merlot spiked wine analyzed at 10, 25, 50, and 100X dilution factors (spike = 10 μg/l | - |
|----------------------------------------------------------------------------------------------------------------------------------------|---|
| of each As species)                                                                                                                    |   |

|                        | AsB  | As III | DMA  | AsC  | ММА  | As V |
|------------------------|------|--------|------|------|------|------|
| <b>Dilution Factor</b> |      |        | þõ   | J/L  |      |      |
| 10X                    | 10.3 | 10.2   | 10.2 | 10.3 | 10.3 | 10.2 |
| 25X                    | 10.1 | 9.9    | 10.4 | 10.7 | 10.1 | 10.6 |
| 50X                    | 10.3 | 10.0   | 10.1 | 10.0 | 10.1 | 10.3 |
| 100X                   | 9.6  | 10.0   | 9.8  | 10.4 | 9.8  | 10.0 |

Figure 6 displays the arsenic speciation chromatograms from the Chile Rosé, Argentina Malbec, USA pinot grigio, and USA merlot wines. These 4 wines were found to have the highest levels of arsenic in this study. Table 5 displays the arsenic species results for the 24 wines analyzed. The results show that 11 of the wines exceeded 10 ppb As total arsenic and 8 of these were due to inorganic arsenic (As III and As V) which is the most harmful of the arsenic species. Figure 7 displays a linear regression plot for the comparison of the total arsenic values with the sum of all 6 arsenic species. The data points fall along the target line (slope = 1) suggesting a linear regression and no bias between the two detection methods.

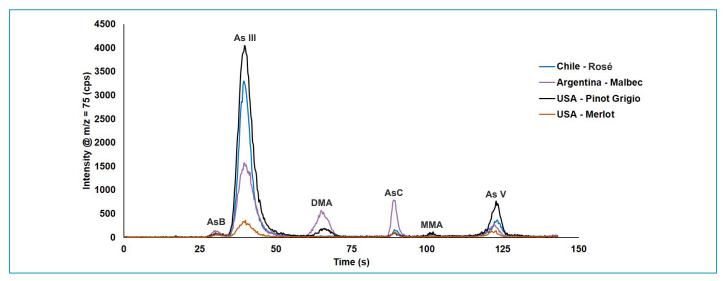



Figure 6. Overlay of chromatograms from a few of the wine samples measured in this study.

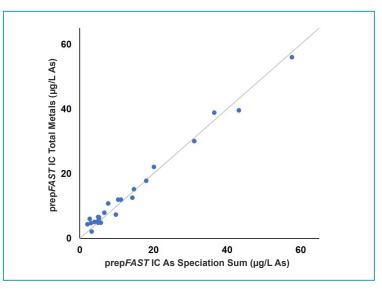





 Table 5.
 Arsenic speciation results for the 24 wines analyzed in this study. Sum column represents the total sum of the 6 arsenic species and Total As column represents the measured values from the total metals measurements.

|              |                    |     |        |     | hố  | g/L |     |      |          |
|--------------|--------------------|-----|--------|-----|-----|-----|-----|------|----------|
| Country      | Туре               | AsB | As III | DMA | AsC | MMA | AsV | Sum  | Total As |
| France       | White Bourgogne    | 0.8 | 3.7    | 0.2 | 0.1 | 0.3 | 1.6 | 6.7  | 7.9      |
| France       | Red Bordeaux       | 0.9 | 7.4    | 0.2 | 0.3 | 0.3 | 1.3 | 10.5 | 11.9     |
| France       | Sauternes          | 0.8 | 3.5    | 0.7 | 4.9 | 0.2 | 1.0 | 11.1 | 12.0     |
| USA          | Merlot             | 0.7 | 10.9   | 0.2 | 0.8 | 0.3 | 1.9 | 14.7 | 15.2     |
| USA          | Pinot Grigio       | 0.5 | 54.2   | 0.9 | 0.2 | 0.2 | 1.8 | 57.6 | 56.1     |
| USA          | Moscato            | 0.8 | 7.7    | 0.5 | 0.0 | 0.2 | 0.7 | 9.8  | 7.3      |
| Chile        | Rosé               | 0.6 | 39.6   | 0.5 | 1.0 | 0.0 | 1.6 | 43.2 | 39.6     |
| Chile        | Carmenere          | 0.7 | 5.0    | 0.2 | 1.3 | 0.1 | 0.3 | 7.7  | 10.8     |
| Italy        | Toscana            | 0.5 | 1.4    | 0.1 | 0.0 | 0.0 | 0.0 | 2.1  | 4.4      |
| Italy        | Stella Peach       | 0.1 | 3.9    | 0.5 | 0.0 | 0.1 | 0.3 | 5.0  | 4.8      |
| Italy        | Moscato            | 0.3 | 2.5    | 0.2 | 0.0 | 0.0 | 0.2 | 3.2  | 2.1      |
| Italy        | Pinot Grigio       | 0.5 | 3.8    | 0.7 | 0.3 | 0.0 | 0.0 | 5.2  | 6.5      |
| Australia    | Shiraz             | 0.9 | 3.3    | 0.2 | 0.4 | 0.0 | 0.1 | 4.8  | 5.2      |
| Australia    | Pinot Grigio       | 0.5 | 3.2    | 0.2 | 0.1 | 0.0 | 0.0 | 3.9  | 5.1      |
| South Africa | Cabernet Sauvignon | 0.7 | 3.2    | 0.2 | 0.9 | 0.0 | 0.0 | 5.0  | 6.6      |
| Spain        | Viura              | 0.3 | 4.0    | 0.9 | 0.0 | 0.0 | 0.0 | 5.2  | 6.1      |
| Spain        | Crianza            | 0.6 | 1.9    | 0.1 | 0.5 | 0.0 | 0.0 | 3.1  | 4.8      |
| Portugal     | Vinho Verde        | 0.3 | 5.4    | 0.0 | 0.0 | 0.0 | 0.0 | 5.7  | 4.8      |
| Portugal     | Tawny Port         | 0.6 | 12.5   | 1.1 | 0.2 | 0.2 | 5.5 | 20.1 | 22.1     |
| Portugal     | Vintage Port       | 0.4 | 1.7    | 0.5 | 0.0 | 0.0 | 0.0 | 2.6  | 6.0      |
| Argentina    | Cabernet Sauvignon | 1.2 | 20.7   | 0.7 | 6.8 | 0.2 | 1.4 | 31.1 | 30.0     |
| Argentina    | Malbec             | 1.1 | 24.3   | 4.8 | 5.5 | 0.0 | 0.7 | 36.5 | 38.9     |
| Argentina    | Torrontes-Sweet    | 0.3 | 11.3   | 0.8 | 1.5 | 0.0 | 0.3 | 14.2 | 12.5     |
| Argentina    | Torrontes          | 1.0 | 10.5   | 1.7 | 4.8 | 0.0 | 0.0 | 18.0 | 17.8     |

### Summary

The results were summarized into categories (country or wine type) for total metals (Table 6) and arsenic speciation (Table 7). Red wine showed statistically higher levels for Fe, Zn, Ba. Sweet wine showed statically higher levels for Cu, whereas, white wine

had no statistically higher levels. Port showed the highest levels for Si, Mn, Ni, Cs, and Pb. The wine tested from USA, Chile, and Argentina displayed the highest levels of inorganic As.

Table 6. Average total metals results sorted by country and wine type, for the 24 wine samples analyzed in direct mode using the prepFAST IC.

|           | <sup>23</sup> Na | <sup>24</sup> Mg | <sup>28</sup> Si | <sup>55</sup> Mn | <sup>57</sup> Fe | <sup>59</sup> Co | <sup>60</sup> Ni | <sup>63</sup> Cu | <sup>66</sup> Zn | <sup>75</sup> As | <sup>98</sup> Mo | <sup>114</sup> Cd | <sup>118</sup> Sn | <sup>121</sup> Sb | <sup>133</sup> Cs | <sup>138</sup> Ba | <sup>205</sup> TI | <sup>208</sup> Pb | <sup>238</sup> U |
|-----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Country   |                  | mg/L             |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                   |                   |                   |                   |                   |                   |                  |
| France    | 21               | 41               | 66               | 1368             | 1527             | 3.7              | 23               | 87               | 865              | 11               | 5                | 0.3               | 2.1               | 0.7               | 3.7               | 154               | 0.4               | 16                | 0.2              |
| USA       | 24               | 45               | 66               | 1430             | 1741             | 4.4              | 24               | 165              | 1013             | 26               | 11               | 1.0               | 7.6               | 1.6               | 6.1               | 183               | 0.6               | 9.2               | 1.3              |
| Chile     | 17               | 49               | 64               | 1280             | 1732             | 3.6              | 14               | 90               | 988              | 25               | 8.2              | 0.2               | 3.0               | 0.4               | 14                | 95                | 0.1               | 4.5               | 0.1              |
| Italy     | 21               | 47               | 45               | 805              | 1199             | 1.9              | 15               | 147              | 451              | 4.5              | 1.8              | 0.2               | 6.5               | 0.3               | 28                | 90                | 0.3               | 5.4               | 0.1              |
| Australia | 36               | 56               | 64               | 1524             | 837              | 4.2              | 12               | 52               | 856              | 5.1              | 4.3              | 0.2               | 3.7               | 0.1               | 1.1               | 139               | 0.1               | 4.9               | 0.1              |
| S. Africa | 28               | 73               | 71               | 2178             | 3386             | 2.6              | 12               | 36               | 546              | 6.6              | 1.9              | 0.1               | 2.0               | 0.2               | 10                | 295               | 0.7               | 5.9               | 0.2              |
| Spain     | 25               | 46               | 63               | 517              | 825              | 1.9              | 8.9              | 44               | 479              | 5.4              | 1.2              | 0.1               | 1.6               | 0.2               | 3.2               | 50                | 0.1               | 3.9               | 0.1              |
| Portugal  | 17               | 54               | 80               | 2153             | 1254             | 6.7              | 39               | 94               | 465              | 11               | 3.0              | 0.3               | 3.4               | 0.6               | 32                | 75                | 0.5               | 19                | 0.6              |
| Argentina | 47               | 42               | 62               | 918              | 1492             | 1.9              | 9.2              | 207              | 372              | 25               | 5.2              | 0.2               | 4.3               | 0.5               | 1.3               | 63                | 0.1               | 12                | 1.1              |
|           | <sup>23</sup> Na | <sup>24</sup> Mg | <sup>28</sup> Si | ⁵⁵Mn             | <sup>57</sup> Fe | <sup>59</sup> Co | <sup>60</sup> Ni | <sup>63</sup> Cu | <sup>66</sup> Zn | <sup>75</sup> As | <sup>98</sup> Mo | <sup>114</sup> Cd | <sup>118</sup> Sn | <sup>121</sup> Sb | <sup>133</sup> Cs | <sup>138</sup> Ba | <sup>205</sup> TI | <sup>208</sup> Pb | <sup>238</sup> U |
| Wine Type |                  | mg/L             |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                   |                   |                   |                   |                   |                   |                  |
| White     | 23               | 43               | 60               | 990              | 1106             | 2.7              | 14               | 98               | 562              | 15               | 5.5              | 0.3               | 4.7               | 0.6               | 3.8               | 83                | 0.3               | 8.2               | 0.6              |
| Red       | 31               | 54               | 70               | 1397             | 2092             | 3.5              | 18               | 98               | 793              | 17               | 5.1              | 0.3               | 3.0               | 0.5               | 16                | 158               | 0.4               | 7.7               | 0.5              |
| Sweet     | 31               | 41               | 40               | 843              | 687              | 2.3              | 12               | 172              | 554              | 8                | 4.2              | 0.4               | 6.9               | 0.5               | 2.4               | 90                | 0.2               | 11                | 0.2              |
| Port      | 16               | 56               | 101              | 2735             | 999              | 8.5              | 52               | 128              | 494              | 14               | 3.9              | 0.3               | 2.8               | 0.7               | 43                | 59                | 0.5               | 24                | 0.7              |

**Table 7.** Average arsenic speciation results sorted by country and wine type, for the 24 wine samples analyzed in speciation mode using the prep*FAST* IC. Sum column represents the sum of the arsenic species and the i-As column represents the sum of As III and As V.

|              |     |        |     | hć  | g/L |     |      |     |
|--------------|-----|--------|-----|-----|-----|-----|------|-----|
| Country      | AsB | As III | DMA | AsC | MMA | AsV | i-As | Sum |
| France       | 0.8 | 4.9    | 0.4 | 1.8 | 0.3 | 1.3 | 6.2  | 9.4 |
| USA          | 0.6 | 24     | 0.5 | 0.3 | 0.2 | 1.4 | 26   | 27  |
| Chile        | 0.6 | 22     | 0.3 | 1.2 | 0.1 | 1.0 | 23   | 25  |
| Italy        | 0.3 | 2.9    | 0.4 | 0.1 | 0.0 | 0.1 | 3.1  | 3.9 |
| Australia    | 0.7 | 3.2    | 0.2 | 0.2 | 0.0 | 0.1 | 3.3  | 4.4 |
| South Africa | 0.7 | 3.2    | 0.2 | 0.9 | 0.0 | 0.0 | 3.2  | 5.0 |
| Spain        | 0.5 | 3.0    | 0.5 | 0.2 | 0.0 | 0.0 | 3.0  | 4.1 |
| Portugal     | 0.4 | 6.5    | 0.5 | 0.1 | 0.1 | 1.8 | 8.4  | 9.5 |
| Argentina    | 0.9 | 17     | 2.0 | 4.7 | 0.1 | 0.6 | 17   | 25  |
|              |     |        |     | hố  | g/L |     |      |     |
| Wine Type    | AsB | As III | DMA | AsC | MMA | AsV | i-As | Sum |
| White        | 0.6 | 12.1   | 0.6 | 0.8 | 0.1 | 0.5 | 13   | 15  |
| Red          | 0.8 | 11.8   | 0.7 | 1.7 | 0.1 | 0.7 | 13   | 16  |
| Sweet        | 0.5 | 5.8    | 0.5 | 1.3 | 0.1 | 0.5 | 6.3  | 8.7 |
| Port         | 0.5 | 7.1    | 0.8 | 0.1 | 0.1 | 2.8 | 9.9  | 11  |